A model for time-dependent flow in (giraffe jugular) veins: uniform tube properties

Author(s)B.S. Brook & T.J. Pedley
Year Published2002
JournalJournal of Biomechanics
Page Numbers95-107
Size1.99 MB
Abstract:

Computations are reported for a one-dimensional model of time-dependent flow in collapsible tubes representing long mammalian veins. The tubes are taken to have uniform intrinsic properties and we concentrate on the effect of longitudinal gravity. The main application is to the jugular vein of the upright giraffe, with given inflow rate from the head, a given pressure, slightly above the external, atmospheric pressure, at the downstream (vena caval) end, and a variety of initial conditions. We show that: (i) previously calculated steady flows are the long time limits of unsteady computations, although only after a considerable time in which slowly-decaying waves and elastic jumps propagate up and down, (ii) steady flows are indeed not found when the steady-flow analysis shown them not to exist, although the consequent unsteadiness is of such small amplitude as to be practically unimportant, (iii) the time taken for the flow to become steady when the neck is raised from the horizontal or the head-down position can be several seconds longer than the neck-raising time itself (3-7 s). We also find that roll-waves do not develop despite having been previously predicted for long collapsible tubes. Further application is made to the effect of postural changes o human neck and leg veins.

Keywords: Collapsible tubes, Unsteady, Flow, Giraffe, Jugular veins
Authors: B.S. Brook & T.J. Pedley
Journal: Journal of Biomechanics


FileAction
Brook-and-Pedley-2002-A-model-for-time-dependent-flow-in-Giraffe-jugula.pdfDownload 
Terms and Conditions: Any PDF files provided by the GRC are for personal use only and may not be reproduced. The files reflect the holdings of the GRC library and only contain pages relevant to giraffe study, and may not be complete. Users are obliged to follow all copyright restrictions.